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Agenda 

 

 Morning: An Introduction to OpenMP 3.1 

 

 Afternoon: Hybrid Programming with MPI 

and OpenMP; Using OpenMP; OpenMP 4.0 

 

 Evening: Practical Programming 
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Agenda 

 Hybrid Programming with MPI and OpenMP 

 

 Using OpenMP 
 Common programming errors 

 Performance Topics 
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Programming Options for “Hybrid” 

Architectures 
 Pure MPI – each core runs an MPI process 

 new MPI-3 support for shared memory makes 

MPI+MPI “hybrid” programming a viable option* 

 Pure OpenMP 

 single process, fully multi-threaded 

 virtual distributed shared address space 

 MPI and OpenMP 

 non-overlapped (“Masteronly”) – only a master thread 

makes MPI calls, while no other threads are active 

 overlapped - many interesting approaches here  

 
* T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R. 

Thakur:  MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared 

memory. Computing, 95(12):1121– 1136, December 2013. 
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Reasons to Add OpenMP 
 OpenMP can be a more efficient solution for intra-node 

parallelism 
 uses less memory than MPI 

 more efficient for fine-grained parallelism 

 may require use within NUMA nodes 

 

 Constraint on total number of MPI processes that can be used for 
application 
 per-node memory limits 

 system limits on number of processes that can be spawned 

 application doesn’t scale past a certain number of MPI processes 

 

 Application exhibits hierarchical parallelization pattern 
 natural to use MPI for top-level, and OpenMP for second level 

 

 Unbalanced MPI workloads – can assign more threads to 
heavily-loaded MPI processes 
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Reasons to be Cautious 
 Interoperability issues between MPI and 

OpenMP implementations 
 is MPI library thread-safe? 

 how might presence of additional threads impact 
MPI’s performance? 

 

 Added complexity in program - beware of shared 
memory programming pitfalls such as data races 
or false sharing 

 

 If limiting communication to a single thread, are 
we still able to saturate the network? 
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NUMA considerations 

 NUMA, Non-Uniform Memory Access 
 this is a common case for your compute nodes 

 Nodes -> (NUMA nodes) Sockets -> Cores -> H/W 
Threads 

 consideration of process/thread assignment to 
cores is critical for performance 

0 0 2 

1 3 

MPI process/master thread 

NUMA node 0 NUMA node 1 NUMA node 0 NUMA node 1 

NUMA node 2 NUMA node 3 NUMA node 2 NUMA node 3 

OpenMP worker threads 
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Resource Utilization Considerations 
 Network Utilization 

 if only one MPI process per node, can we still 

saturate the network port? 

 usually yes, but maybe not if multiple network ports 

become commonplace in the near future 

 Core Utilization 

 Threads can help overlap computation with 

communication 

 Can also help balance workloads through 

worksharing constructs 

 However: sleeping threads (“Masteronly” mode) will 

limit core utilization 

 

 
8 



Hybrid Programming in Practice 

 Typically start with an MPI program, and you use 
OpenMP to parallelize it 
 loop parallelism 

 task parallelism 

 SIMD and Accelerators (next talk: OpenMP 4.0) 

 Strategies 
 vary number of threads based on workload in each process 

 find best mapping of threads to cores  

 use threads to overlap computation with MPI calls for more 
asynchronous progress 

 generally requires experimentation to find best combination 
(e.g. # processes, # threads/process, thread affinity) 
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MPI Thread Support Modes (Recap) 

 Request/get thread support mode using call to MPI_Init_thread instead 
of MPI_Init 

 

 MPI_THREAD_SINGLE (default with MPI_Init) 
 assume MPI process is not multi-threaded 

 

 MPI_THREAD_FUNNELED 
 multi-threaded processes allowed 

 only one designated thread is making MPI calls 

 

 MPI_THREAD_SERIALIZED 
 multi-threaded, and multiple threads may make MPI calls 

 calls must be serialized 

 

 MPI_THREAD_MULTIPLE 
 multi-threaded, no restrictions 

 requires fully thread-safe MPI implementation 
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Example: MPI_THREAD_FUNNELED  

#include <mpi.h> 

 

int main(int argc, char **argv) 

{ 

    int rank, size, ierr, i, provided;  

    MPI_Init_thread(&argc,&argv,  

                                  MPI_THREAD_FUNNELED,  

                                  &provided); 

  ... 

   #pragma omp parallel 

{ 

   #pragma omp master 

     { ... MPI calls ... } 

   #pragma barrier 

   #pragma omp for 

    for (i = 0; i < N; i++) { 

           do_something( i );          

    } 

    ... 

call MPI_Init_thread to request 

MPI_THREAD_FUNNELED 

now we can do MPI in parallel 

region 

(NOTE: master construct ensures its 

the same thread which does it) 

REMEMBER: if using master, we 

may also need a barrier 
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Example: MPI_THREAD_SERIALIZED  

... 

 

   MPI_Init_thread(&argc,&argv,  

                                  MPI_THREAD_SERIALIZED,  

                                  &provided); 

  ... 

   #pragma omp parallel 

{ 

   ... 

   #pragma omp single 

     { ... MPI calls ... } 

   

   #pragma omp for 

    for (i = 0; i < N; i++) { 

           do_something( i );          

    } 

    ... 

With SERIALIZED, we can now use 

a SINGLE construct for more 

flexibility. 

 

NOTE: Use nowait clause if you 

wish to avoid implicit barrier at the 

end and obtain overlap 
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Example: MPI_THREAD_MULTIPLE  

... 

 

   MPI_Init_thread(&argc,&argv,  

                                  MPI_THREAD_MULTIPLE,  

                                  &provided); 

  ... 

   #pragma omp parallel 

{ 

     tid = omp_get_thread_num(); 

     ... 

     if (mpi_rank % 2) { 

          MPI_Send(data, N, MPI_INT, mpi_rank-1, tid, ... ); 

     } else { 

          MPI_Recv(data, N, MPI_INT, mpi_rank+1, tid, ... ); 

     } 

      ... 

} 

With MULTIPLE, no restrictions on 

using MPI calls in a parallel region. 
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Hiding Communication Latency using OpenMP 

 MPI communication is often blocking 

 even non-blocking calls may require MPI calls to 

achieve progress 

 hardware support and/or helper threads might 

help, but often not available 

 Strategies using OpenMP 

 use an “explicit” SPMD approach 

 use nested parallel region  

 use tasks 
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Achieving Overlap using a SPMD approach 
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... 

   MPI_Init_thread(...); 

  ... 

 #pragma omp parallel 

{ 

     tid = omp_get_thread_num(); 

     ... 

     if (tid == 0) { 

         /* first thread does MPI stuff */ 

     } else { 

         /* remaining threads carry on with independent 

            computation */ 

     } 

     #pragma omp barrier 

} 

Here we divide thread team into two 

“subteams” using thread ID.  

 

Main Issue: 

- work-sharing constructs in “else” 

block are unavailable to us 

- requires explicit coding of work-

sharing, cumbersome and 

inflexible 

 



Achieving Overlap using Nested Parallelism 
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... 

  omp_set_nested(true); 

  ... 

 #pragma omp parallel num_threads(2) 

{ 

     tid = omp_get_thread_num(); 

     ... 

     if (tid == 0) { 

        /* do MPI stuff */ 

     } else { 

        /* thread 1 spawns a new parallel region to do work */  

        #pragma omp parallel  

        { ... }      

     } 

     ... 

} 

nested parallel region here can 

perform all work-sharing constructs 

independent of the MPI 

communication by thread 0 



Achieving Overlap using nowait clause 
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... 

   MPI_Init_thread(...); 

  ... 

 #pragma omp parallel 

{ 

   #pragma omp master 

   { /* first thread does MPI stuff */ } 

 

    /* remaining threads continue with other work */ 

   #pragma omp for schedule (...) nowait 

    for(...) { ... } 

   #pragma omp for schedule(...) nowait 

    for(...) { ... } 

    ... 

} 

This approach allows us to utilize all 

threads (including, eventually, the 

MPI-designated thread(s)) for doing 

computation 



Achieving Overlap using explicit tasks 
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... 

   MPI_Init_thread(...); 

  ... 

 #pragma omp parallel 

{ 

     ... 

    #pragma omp master 

     {  

        for (...) { 

        #pragma omp task 

            { /* create tasks for other threads to work on */ } 

        } 

        /* after task creation, master does MPI stuff*/  

     } 

 

    #pragma omp barrier 

    ... 

} 

Here, the master creates tasks 

which may be picked up by the 

other threads. 

 

Recall: barriers are task scheduling 

points. 



NPB Multi-Zone Parallel Benchmarks  

 Compute discrete solutions of unsteady, compressible Navier-Stoke equations 
in 3D 
 

 For each problem, a logically rectangular discretization mesh is divided into a 
2D horizontal tiling of 3D zones 
 

 Consists three algorithm benchmarks: LU, SP and BT 
 LU (Lower-Upper symmetric Gauss-Seidel)  

 SP (Scalar Penta-diagonal) 
 BT (Block Tri-diagonal)  
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Assign more 

threads to larger 

size zones, static 

load balancing 



BT-MZ and SP-MZ Results 

 Class E 
 4096 zones (max. 

number of MPI processes) 
 Platform: 

 “Ranger” at TACC, Austin 
 3936 blades, each with 4 

AMD Opteron “Barcelona” 
quad-core chips 

 MPI: mvapich 
 numactl used for 

thread/core affinity 

 
BT-MZ performance with 

unbalanced workload 

greatly improved 

by adding OpenMP 

Rolf Rabenseifner, Georg Hager, and Gabriele Jost: Hybrid MPI/OpenMP 

Parallel Programming on Clusters of Multi-Core SMP Nodes.  

In Didier El Baz et al. (Eds.), (PDP 2009), in Weimar, Germany, Feb. 16-18, 2009, 

Computer Society Press, pp. 427-236. 
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http://www.pdp2009.org/


Summary 

 Technological trends makes hybrid programming all the more 

important 

 “fatter” nodes with cc-NUMA characteristics 

 reduced memory available per core 

 extreme-scale computing will require dynamic, load balancing 

strategies 

 With OpenMP, you can 

 develop more memory-efficient algorithms for within the node 

 “workshare” among threads using various scheduling policies, to 

curtail load imbalance 

 hide communication latency using a variety of strategies 

 As always, choose the best programming system for 

your problem.  
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 Using OpenMP 
 Common programming errors 

 Performance Topics 
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Common Sources of Errors  
 
 Wrong “spelling” of sentinel 

 Wrongly declared data attributes (shared vs. private, 
firstprivate, etc.) 

 Incorrect use of synchronization constructs 

 Less likely if user sticks to directives 

 Erroneous use of locks can lead to deadlock 

 Erroneous use of NOWAIT can lead to race conditions. 

 Race conditions (true sharing) 

 Can be very hard to find 

23 

It can be very hard to track race conditions. Tools may help check for these, but 

they may fail if your OpenMP code does not rely on directives to distribute work. 

Moreover, they can be quite slow.  



Care with Synchronization 

 Recall that a thread’s temporary view of memory may vary 
from shared memory 

 Value of shared objects updated at synchronization points 

 User must be aware of the point at which modified values are 
(guaranteed to be) accessible 

 Compilers routinely reorder instructions that implement a 
program 

 Helps exploit the functional units, keep machine busy 

 Compiler cannot move instructions past a barrier 

 Also not past a flush on all variables 

 But it can move them past a flush on a set of variables so long as 
those variables are not accessed 
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Race Condition 

 Several threads access and update shared data 
concurrently 

 One thread writes and one or more threads read or write 
same memory location at about the same  time 

 Outcome depends on relative ordering of operations and 
may differ between runs 

 User is expected to avoid race conditions 

 insert synchronization constructs as appropraite, or 

 privatize data 

 Some tools exist to detect data races at runtime 

 e.g. Intel Thread Checker, Oracle Solaris Studio Thread 
Analyzer 
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Global Data – An Example/1 

      program global_data 
             .... 
      use mod_global_data 
          .... 
!$omp parallel do private(j) 
      do j = 1, n 
         call suba(j) 
      end do 
!$omp end parallel do 
        ...... 

module mod_global_data 
 
   implicit none 
 
   integer, parameter:: m= .., n= .. 
   integer           :: a(m,n), b(m) 
 
end module mod_global_data 

Arrays “a” 

and “b” are 

shared 
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Global Data – An Example/2 

subroutine suba(j) 
  ..... 
 
use mod_global_data 
   
  ..... 
 
 
do i = 1, m 
   b(i) = j 
end do 
 
do i = 1, m 
   a(i,j) = func_call(b(i)) 
end do 
 
return 
end 

Data Race ! 
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Global Data - A Data Race! 

call suba(1) 

Thread 1 

call suba(2) 

Thread 2 

S
h

a
re

d
  

subroutine suba(j=1) 
     
 
 
     
        .... 
do i = 1, m 
  a(i,1)=func_call(b(i)) 
end do 

do i = 1, m 
   b(i) = 1 
end do 

subroutine suba(j=2) 
     
 
 
     
        .... 
do i = 1, m 
  a(i,2)=func_call(b(i)) 
end do 

do i = 1, m 
   b(i) = 2 
end do 
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Global Data – A Solution/1 

      program global_data 
             .... 
      use mod_global_data 
          .... 
!$omp parallel do private(j) 
      do j = 1, n 
         call suba(j) 
      end do 
!$omp end parallel do 
        ...... 

module mod_global_data 
 
   implicit none 
 
   integer, parameter:: m= .., n= .. 
   integer, parameter:: nthreads = ... 
   integer           :: a(m,n), b(m,nthreads) 
 
end module mod_global_data 

Make array “b” 

2-dimensional 
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Global Data – A Solution/2 

subroutine suba(j) 
  ..... 
 
use omp_lib 
use mod_global_data 
   
  ..... 
 
TID = omp_get_thread_num()+1 
do i = 1, m 
   b(i,TID) = j 
end do 
 
do i = 1, m 
   a(i,j) = func_call(b(i),TID) 
end do 
 
return 
end 

A lot of work and 

not very portable 
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Global Data – The Preferred Solution 

      program global_data 
             .... 
      use mod_global_data 
          .... 
!$omp parallel do private(j) 
      do j = 1, n 
         call suba(j) 
      end do 
!$omp end parallel do 
        ...... 

Only add the 

“threadprivate” directive to 

the module file; no other 

changes needed ! 

module mod_global_data 
 
   implicit none 
 
   integer, parameter:: m= .., n= .. 
   integer           :: a(m,n), b(m) 
 
   !$omp threadprivate(b) 
 
end module mod_global_data 

This solution 

also 

automatically 

adapts to the 

number of 

threads used 
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Recap: About Global Data 

 Global data is shared: take care when using it 

 Potential problems if multiple threads access the 
same memory simultaneously: 
 Read-only data is no problem 

 Updates have to be checked for race conditions 

 It is your responsibility to deal with this situation 

 In general one can do the following: 
 Split the global data into a part that is accessed in serial 

code only and a part that is accessed in parallel 

 Manually create copies of the latter 

 Use the thread ID to access these copies 

 Alternative: Use OpenMP's threadprivate directive ! 
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General Comments on Performance 
 
 Be aware of overheads of OpenMP constructs, 

thread management 

 Microbenchmarks help here* 

 Don’t create too many parallel regions 

 Dynamic loop schedules have much higher overheads 
than static schedules 

 Synchronization is expensive, so minimize 

 use nowait where possible  

 privatize data 

 minimize code in critical region 

 Choose default behavior carefully 

 Use appropriate schedules 

 Wait policy (OMP_WAIT_POLICY=passive|active)  

 

34 

* J. M. Bull and D. O’Neill, A microbenchmark suite for OpenMP 2.0,   

SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.   



General Comments on Performance 
 
 Thread / Data Affinity 

 Check on your implementation’s documentation to control for this 
 e.g. KMP_AFFINITY for Intel, GOMP_CPU_AFFINITY for GNU 

 Other tools (e.g. taskset, numactl, likwid) can help with this 

 OpenMP 4.0 includes features to control for this 

 Structure and characteristics of program 
 Minimize sequential part of program 

 Be aware of and address load balance 

 Address cache utilization and false sharing (it can kill any 
speedup if not addressed) 

 Large parallel regions help reduce overheads, enable better 
cache usage and standard optimizations 

 Quality of compiler is also a factor on achievable 
performance 
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Briefly, on OpenMP Implementations 
 Directives implemented via 

code modification and 
insertion of runtime library 
calls 
 Typical approach is outlining of 

code in parallel region 

 Or generation of micro tasks 

 Runtime library responsible 
for managing threads 
 Scheduling loops 

 Scheduling tasks 

 Implementing synchronization 

 Collector API provides interface 
to give external tools state 
information 

 Implementation effort is 
reasonable 

OpenMP Code Translation 

int main(void) 

{ 

int a,b,c; 

#pragma omp parallel \ 

private(c) 

do_sth(a,b,c); 

return 0; 

} 

_INT32 main() 

{ 

int a,b,c; 

/* microtask */ 

void __ompregion_main1() 

{ 

_INT32 __mplocal_c; 

/*shared variables are kept intact,  

substitute accesses to private 

variable*/ 

do_sth(a, b, __mplocal_c); 

} 

… 

/*OpenMP runtime calls */ 

__ompc_fork(&__ompregion_main1

); 

… 

} 

Each compiler has custom run-time support. Quality of the 

runtime system has major impact on performance. 
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OpenMP and Data Locality 

 Implicit Data Locality 

 Thread fetches data it needs into local cache 

 Emphasis on privatizing data where possible, and optimizing 

code for cache 

 Implicit means of data layout on NUMA systems 

 “First touch” as introduced by SGI for Origin 

 Emphasis on privatizing data where 

possible, and optimizing code for cache 

 This can work pretty well 

 But small mistakes may be costly 
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Tuning: Critical Regions 

 It often helps to chop up large critical sections into 
finer, named ones 

 Original Code 
 #pragma omp critical (foo) 

 { 

  update( a ); 

  update( b ); 

 } 

 Transformed Code 
 #pragma omp critical (foo_a) 

  update( a ); 

 #pragma omp critical (foo_b) 

  update( b ); 
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Tuning: Locks Instead of Critical 

 Original Code 
  

 #pragma omp critical 

   for( i=0; i<n; i++ ) { 

  a[i] = … 

  b[i] = … 

  c[i] = … 

   }   

 

 Idea: cycle through 

different parts of the array 

using locks! 
 

 Transformed Code 
  

 jstart = omp_get_thread_num(); 

 for( k = 0; k < nlocks; k++ ) { 

   j = ( jstart + k ) % nlocks; 

   omp_set_lock( lck[j] ); 

   for( i=lb[j]; i<ub[j]; i++ ) { 

    a[i] = … 

    b[i] = … 

    c[i] = … 

     }   

   omp_unset_lock( lck[j] ); 

 } 

 

 Adapt to your situation 
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Tuning: Eliminate Implicit Barriers 

 Worksharing constructs have implicit barrier at end 

 If consecutive work-sharing constructs modify (& use) different 

objects, the barrier in the middle can be eliminated 

 If same object modified (or used), barrier can be safely removed if 

iteration spaces guaranteed to align 
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#pragma omp for nowait 

for (i = 0; i < N; i++) { 

    d[i] = a[i] + b[i]*c[i]; 

} 

 

#pragma omp for schedule(runtime) 

for (i = 0; i < N; i++) { 

    e[i] = c[i] + b[i]*a[i]; 

} 

 

#pragma omp for nowait 

for (i = 0; i < N; i++) { 

    d[i] = a[i] + b[i]*c[i]; 

} 

 

#pragma omp for 

for (i = 0; i < N; i++) { 

    e[i] = d[i] + b[i]*c[i]; 

} 

 

no barriers needed here 

spec guarantees same 

iteration-to-thread 

mapping 

no dependences 

between these loops 



Cache Coherence and False Sharing 

 Blocks of data are fetched into cache lines 

 What happens if multiple threads access different data, 

but on same cache line, at same time?  
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core1 core2 core3 coreN 

Shared memory 

cache1 cache2   cache3 cacheN 

... 



Updates to Shared Data  

 Blocks of data are transferred to cache lines 

 When an element of cache line is updated, the entire line is 

invalidated: local copies are reloaded from main memory 
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core1 core2 core3 coreN 

Shared memory 

cache1 cache2   cache3 cacheN 

a 

a[2] 

a 

a[1], but also a[0] 

and a[2] 

a[0], but 

also a[1] 

and a[2] 

... 



Small “Mistakes”, Big Consequences 

 GenIDLEST 

 Scientific simulation code 

 Solves incompressible Navier 
Stokes and energy equations 

 MPI and OpenMP versions 

 Platform 

 SGI Altix 3700 (NUMA) 

 512 Itanium 2 Processors 

 OpenMP code slower than MPI 

OpenMP version 

MPI version 

In the OpenMP version, a single procedure is responsible for 20% of  

the total time and is 9 times slower than the MPI version . Its loops are up 
to 27 times slower in OpenMP than MPI.     
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A Solution: Privatization 
• Lower and upper bounds of arrays used 

privately by threads are shared, stored in 

same memory page and cache line 
 

•Here, they have been privatized to eliminate 

false sharing issue 

 

•The privatization improved the performance of 

the whole program by 30% and led to a 10x 

speedup for the procedure. 

 

 

OpenMP Optimized Version 
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False Sharing: Monitoring Results 

 Phoenix codes ported from Pthreads to OpenMP 

 5 out of 8 apps show symptoms of false sharing 

Program name 1-thread 2-threads 4-threads 8-threads 

histogram 13 7,820,000 16,532,800 5,959,190 

kmeans 383 28,590 47,541 54,345 

linear_regression 9 417,225,000 254,442,000 154,970,000 

matrix_multiply 31,139 31,152 84,227 101,094 

pca 44,517 46,757 80,373 122,288 

reverse_index 4,284 89,466 217,884 590,013 

string_match 82 82,503,000 73,178,800 221,882,000 

word_count 4,877 6,531,793 18,071,086 68,801,742 

Cache Invalidation Count 
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False Sharing: Data Analysis Results 

 Determining the variables that cause misses 

Program 

Name 

Global/static data Dynamic data 

histogram - main_221 

linear_regression - main_155 

reverse_index use_len main_519 

string_match key2_final string_match_map_266 

word_count length, use_len, 

words 

- 
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Runtime False Sharing Detection 
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B. Wicaksono, M. Tolubaeva and B. Chapman. “Detecting false sharing in OpenMP 
applications using the DARWIN framework”, LCPC 2011 47 



Summary 

 OpenMP is designed to be easy to use, but 

there are several pitfalls to avoid 

 Data races are a common programming error in 

shared memory programming which can be hard to 

spot – know when to privatize your data! 

 Beware of subtle synchronization error 

 unless you’re very careful, stick to OpenMP directives 

 Know the overheards associated with the 

constructs you’re using 

 Know how to control thread and data placement 

 False sharing can also kill performance 
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